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ABSTRACT

Magnetic Resonance Imaging has been one of the most popular imaging modality

providing high resolution anatomical scans. However along with anatomical informa-

tion the tissue metabolism reveals more intricate information which only manifests as

structural changes much later. Magnetic Resonance Spectroscopic Imaging (MRSI) is

one such unique technique which simultaneously achieves structural and bio-chemical

information. However the clinical appeal is restricted due to many of the limitations

particular to spectroscopic imaging.

In this thesis such technical challenges were targeted and optimization techniques

were developed exploiting data driven models as priors to improve reconstruction

and data acquisition of spectroscopic data. Specifically, three problems were looked

at which have been particularly challenging for MRSI. In this work methods were de-

veloped to increase the spatial resolution and decrease truncation artifacts from high

intensity lipids surrounding the brain introducing algorithms for lipid un-suppressed

recovery. Secondly structured low-rank algorithm for removal of spurious peaks arti-

facts in high resolution echo-planar spectroscopic(EPSI) data were developed. Finally

novel methods to accelerate multi-dimensional spectroscopy were introduced.

In the first part a novel algorithm is introduced to push the spatial resolution of

MRSI data with minimal lipid leakage artifacts, from dual density spiral acquisition.

The reconstruction of MRSI data from dual-density spiral data is formulated as com-

partmental low-rank recovery problem. The MRSI dataset is modeled as the sum

of metabolite and lipid signals, each of which are support limited to the brain and

extra cranial regions respectively, in addition to being orthogonal to each other. The

reconstruction problem is formulated as an optimization problem, which is solved us-

ing iterative re-weighted nuclear norm minimization. The comparisons of the scheme

against dual-resolution reconstruction algorithm on numerical phantom and in-vivo

datasets demonstrate the ability of the scheme to provide higher spatial resolution
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and lower lipid leakage artifacts. The experiments demonstrate the ability of the

scheme to recover the metabolite maps, even from short echo-time lipid unsuppressed

datasets. The proposed reconstruction method and data acquisition strategy provides

an efficient way to achieve high resolution metabolite maps without lipid suppression.

This algorithm is beneficial for fast metabolic mapping and extension to multislice

acquisitions.

The second part studies echo-planar spectroscopic imaging (EPSI) sequence which

is often spectrally interleaved to rapidly collect metabolic MRI data. The main prob-

lem in using it on high field scanners is the presence of spurious peaks resulting from

phase distortions between interleaves as well as the low signal to noise ratio. We

introduce a novel structured low-rank framework for the simultaneous denoising and

deinterleaving of spectrally interleaved EPSI data. The proposed algorithm exploits

annihilation relations resulting from the linear predictability of exponential signals

as well as due to uncorrected phase relations between interleaves. The algorithm is

formulated as a structured nuclear norm minimization of a block Hankel matrix, de-

rived from the interleaves. Experiments using hyperpolarized 13C mouse kidney EPSI

data and 1H in-vivo EPSI data demonstrate the ability of the algorithm to remove

ghost peaks from EPSI data collected using bipolar readout gradients and flyback

trajectories.

Finally a computationally efficient structured low rank algorithm for the recon-

struction of two-dimensional infrared (2D IR) spectroscopic data from few measure-

ments is introduced. The signal is modeled as a combination of exponential lineshapes,

which are annihilated by appropriately chosen filters. The annihilation relations result

in a low-rank constraint on a Toeplitz matrix constructed from signal samples, which

is exploited to recover the unknown signal samples. Quantitative and qualitative

studies on simulated and experimental data demonstrate that the algorithm outper-

forms the discrete compressed sensing algorithm, both in uniform and non-uniform

v
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sampling settings. The method is also extended to accelerate multidimensional MR

spectroscopic data.
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PUBLIC ABSTRACT

Non-invasively resolving spatial distribution of tissue metabolites serves as a diag-

nostic tool to in-vivo metabolism thus making magnetic resonance spectroscopic imag-

ing (MRSI) a very useful application. The tissue concentrations of various metabolites

reveal disease state and pseudo-progression of tumors. Also, bio-chemical changes

manifest much earlier than structural changes that are achieved using standard mag-

netic resonance imaging (MRI). However, MRSI has not achieved its potential due to

several technical challenges that are specific to it. Several technical advances in the

field of MRI does not translate to MRSI. The specific limitations which make MRSI

challenging include long scan times, poor spatial resolution, extremely low signal to

noise ratio (SNR), truncation artifacts, to name a few.

In the last few decades, research in MRSI has focused on advanced data acquisition

and reconstruction methods, however they cannot achieve high resolution and feasible

scan time. Moreover there are several artifacts that thwart the increase of spatial

resolution not to mention extremely low SNR. Existing methods cannot deal with

these limitations which considerably impacts applications of MRSI. In this thesis

work these problems are revisited and data acquisition and reconstruction techniques

are introduced to address several such challenges.

In the first part of the thesis a variable density spiral acquisition technique is

developed which achieves high SNR corresponding to metabolites of interest while

reducing truncation artifacts. Along with that we develop a novel compartmentalized

reconstruction framework to recover high resolution maps from lipid unsuppressed

data. Avoiding lipid suppression not only reduces scan time and reliability but also

improves SNR which is otherwise reduced even further with existing lipid suppression

methods. The proposed algorithm exploits the idea that the lipid and metabolite

compartment reside in low-dimensional subspace and orthogonality priors are used to

reduce overlap of subspaces.
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This work also explores spectral artifacts like Nyquist ghosting which is a common

problem with spectral interleaving. Especially in echo-planar spectroscopic imaging

(EPSI), one of the most popular MRSI techniques, maintaining a spatial and spectral

resolution requires interleaving. Due to scanner inconsistencies spurious peaks arise

which makes quantification inefficient. In this thesis a novel structural low-rank prior

is used to reduce and denoise spectra and achieve high resolution ESPI data.

Finally part of this thesis is dedicated to accelerating multi-dimensional spec-

troscopic problems. Resolving spectra in two dimensions can help study overlapping

spectra and achieve more insight. However with an increased dimension the scan time

increases. An algorithm for accelerating this method is developed by recovering data

from undersampled measurements.The performance of the algorithm is demonstrated

for two applications, 2D infra red spectroscopy and 2D MR spectroscopy .

The aim of the thesis is to solve these challenges in MRSI from a signal processing

perspective and be able to achieve higher resolution data in practical scan time to

ultimately help MRSI reach its potential.
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CHAPTER 1
INTRODUCTION

Magnetic resonance imaging (MRI) has been a versatile clinical tool since its incep-

tion and has revolutionized medicine by providing a non-invasive method diagnostic

and prognostic assessment in-vivo without the bane of exposure to harmful radiation.

Even though traditional MRI is unparalleled in its ability to provide complementary

tissue contrasts highlighting specific anatomical features or impairment, another di-

mension of information lies in the tissue metabolite content which can be probed

using magnetic resonance spectroscopic imaging (MRSI). MRSI consolidates the ba-

sic principles underlying MRI, and the spectrally discrimination abilities of nuclear

magnetic resonance (NMR) spectroscopy resulting in spatially localized distributions

of metabolic content.

MRSI has been identified for its potential to provide complementary information

in the study of diseases such as cancer and treatment of brain tumors [47, 84]. For

instance contrast-enhanced structural MRI, even though a powerful diagnostic aid,

is unable to identify regions of active tumor [48, 87, 90]. However, MRSI has been

acknowledged for its discriminating potential of different diagnostics and is proving to

be a useful tool for revealing tumor heterogeneity [77,97,104]. Moreover, some studies

reveal that extent of high grade gliomas reported by metabolite maps derived from

MRSI measurements exceed the pathological volume determined by accompanying

structural MR images [93, 105] and are also observed to have correlation with tumor

recurrence following radiosurgery [18,39]. The advantage of MRSI is not only limited

to brain but has been demonstrated in study of breast [55] and prostate cancer [62,

102], psychiatric conditions [23, 35], neurodegenerative disorders [1, 103], and in the

localization of epileptogenic networks and foci [4, 67].

In spite of the promise it offers MRSI has not achieved as much clinical appeal.

This is because of several technical limitations which have make it cumbersome to em-
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ploy MRSI exams in a practical setting. The following are the fundamental technical

limitations.

• Low signal to noise ratio (SNR): The metabolites of interest to be imaged

in MRSI are extrememly low in concentration compared to water molecules

that are imaged in standard MRI [24]. They are about thousand times smaller

in concentration compared to water (see Fig. 1.1(a)). This makes MRSI an

imaging modality with extremely low sensitivity.

• Long data acquisition time: To counter the SNR limitation, several aver-

ages are collected in MRSI studies thus leading to long scan times. Moreover,

data needs to be encoded in multiple dimensions, three spatial for full brain

and two spectral for multidimensional MRSI, making it extremely slow. This

significantly prolongs the data acquisition limiting the practical utility.

• Poor Spatial Resolution: To reduce scan time MRSI methods are restricted

to limited number of spatial encodes and obtain reconstruction with large voxel

size so as to get enough signal. This results in severe voxel interference restrict-

ing proper spatial resolution of spectroscopic information. As shown in Fig.

1.1(b) metabolite maps have very low resolution compared to standard MRI on

the left.

• High intensity nuisance signals : MRSI experiments face the challenge of

dealing with high intensity nuisance signals like water and lipids which over-

power the signals of interest. These signals if not removed can have detrimental

effects on the estimation of metabolic information. Fig. 1.2 exhibits some com-

mon lipid suppression methods.

• Long experimental time for multi-dimensional spectroscopy: Linear or

1-dimensional spectroscopy is often incapable of distinguishing ambiguous spec-

tral features. These embarrassing ambiguities of one-dimensional spectroscopy
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Metabolite concentration = 1 to 10 mM

Water concentration = 50,000 mM

water
lipids

Concentration of metabolites relative 
to water and lipids

Typical low-res metabolite maps 

Typical spatial resolution of MRS = 1–10 cm3

Typical spatial resolution of MRI = 1–10 mm3

(a) (b)

Figure 1.1: Low SNR and resolution of metabolites: (a) Metabolites of interest are
SNR starved in comparison to water and lipid signals in the brain. It is about 5000
times smaller in concentration. (b) Typically voxel sizes for MRSI are much larger
compared to MRI to boost SNR. This results in low resolution images. No spatial
details can be observed in the metabolite maps whereas the MRI scan on the left has
high resolution details.

Figure 1.2: Lipid suppression methods: Several methods have been developed to
remove nuisance lipid signals during the data collection step. Unfortunately they
come with limitations like reduced volume coverage and further reduction of SNR.
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can be overcome using multidimensional spectroscopy (MuDSy) where cross-

peaks in the 2D spectrum directly map to couplings that are highly dependent

on distance and angular orientation. However increased dimensions increases

scan time.

These consideration and several other practical constraints related to expected

patient compliance, thus command considerable compromises in terms of comprehen-

siveness of the measurement process and the overall scan time. Therefore, translation

of MR spectroscopic exams to regular clinical practice is challenging and less preva-

lent.

Over the last few decades several attempts have been made to improve MRSI.

Efforts have been made to improve hardware such as high field scanners and parallel

transmit/receive arrays. Many fast scanning procedures and data acquisition meth-

ods have been developed, even though these methods reduce scan time it comes at the

expense of SNR. A number of advanced reconstruction methods have been developed

exploiting prior information to compensate for lack of SNR. They exploit anatomi-

cal priors, sparsity and low-rank constraints and parametric models to recover from

noisy and undersampled measurements. However reconstruction methods have not

addressed some of the concerns which need to be solved for MRSI to gain momentum.

1.1 Contribution

In this thesis we develop several optimization and reconstruction techniques to

answer several technical concerns.

• Compartmentalized model for lipid unsuppressed reconstruction: We

combine the dual-density spiral MRSI acquisition method with a novel compart-

mentalized low-rank algorithm to recover metabolic images with higher spatial

resolution and minimal lipid leakage artifacts. We model the field inhomo-

geneity compensated dataset as the sum of metabolite and lipid signals, each
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of which are only non-zero within the brain and extra-cranial regions, respec-

tively. Since each of these signals arise from finite number of anatomical regions

with distinct spectral signatures, they can each be efficiently represented as the

linear combination of finite number of basis functions. We propose to organize

the metabolite and lipid signals as low-rank matrices, and their recovery from

noisy measurements can be regularized using nuclear norm penalties.

• Removal of spurious peaks due to spectral interleaving: We introduce

a novel reconstruction method for EPSI data which does not depend on accu-

rate estimates of phase inconsistencies or k-t space trajectory to suppress the

spectral ghosts. We exploit the annihilation relations in spectrally interleaved

EPSI data resulting from the linear predictability of exponential signals and

phase relations between the interleaves. We pose the problem as a recovery of

two signals at each pixel, corresponding to the odd and even interleaves. We

rely on the annihilation property due to linear predictability of the exponen-

tials. We construct a block Hankel matrix, whose entries correspond to the two

echoes, that capture the annihilation relations in a compact way; the annihi-

lation relations translate to a low-rank block Hankel matrix, which we recover

from undersampled measurements using structured nuclear norm minimization.

• Accelerated reconstruction of multi-dimensional spectroscopy: We in-

troduce a computationally efficient structured low rank algorithm for the re-

construction of two-dimensional infrared (2D IR) spectroscopic data from few

measurements. The signal is modeled as a combination of exponential line-

shapes, which are annihilated by appropriately chosen filters. The annihilation

relations result in a low-rank constraint on a Toeplitz matrix constructed from

signal samples, which is exploited to recover the unknown signal samples. Quan-

titative and qualitative studies on simulated and experimental data demonstrate
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that the algorithm outperforms the discrete compressed sensing algorithm, both

in uniform and non-uniform sampling settings.

1.2 Organization of the Thesis

The thesis is organized as follows.

Chapter 2 introduces the compartmentalized low-rank based model developed for

reconstruction of high resolution MRSI data and removal of lipid leakage artifacts.

We also introduce a novel approach for collecting dual denisty spiral data. Chapter 3

describes a structured low-rank model we developed for removal of spurious Nyquist

ghosts arising in the spectral domain due to spectral interleaving. We specifically

evaluate the performance for EPSI data acquisition. Chapter 4 describes a method

for accelerating multi-dimensional spectroscopy while preserving lineshapes. Optical

spectroscopy experiments such as 2D infra-red spectroscopy spectroscopy is a tool we

use to study transient molecular structure and dynamics in solution. As a vibrational

spectroscopic method, it directly interrogates the vibrations of chemical bonds and

how the vibrations interact with one another. The proposed method is able to re-

trieve lineshapes at high acceleration factors making experiments feasible. Finally 5

concludes the research and highlights future directions for this research.
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CHAPTER 2
COMPARTMENTALIZED LOW-RANK RECOVERY FOR HIGH

RESOLUTION LIPID UNSUPPRESSED MRSI

2.1 Introduction

MR Spectroscopic Imaging (MRSI) enables the spatial mapping of multiple tissue

metabolites in vivo, many of which are proven to be valuable biomarkers for several

diseases [36, 37, 80]. However, the clinical utility of MRSI is currently restricted by

several challenges, resulting from very low metabolite concentrations. Specifically,

the achievable spatial resolution using Nyquist sampling and conventional recovery

schemes is limited by SNR of the metabolites and scan time. The broad point spread

functions result in significant spectral leakage from the extra cranial lipid signals and

residual water signals, which have several orders of magnitude higher intensity than

metabolites.

Several water and lipid suppression schemes are available in MRSI. The chemical-

shift selective saturation methods [25, 41, 86], followed by post processing methods

such as Hankel singular value decomposition (HSVD) [7] can provide reasonable sup-

pression of the residual water signal. Popular approaches to attenuate lipid signals

include outer volume suppression (OVS) [21,28,65,74], inversion recovery [16,29,61],

inner volume excitation [14, 15], and the use of long echo times [75, 100]. None of

these methods provide perfect suppression of lipids, in addition results in signal loss

or reduced brain coverage. Moreover, many of these methods have limitations in the

practical setting. For example, the placement of the OVS bands may be challenging

and time consuming for multislice acquisitions and also be limited by allowable RF

energy deposition limits at higher field strengths. The performance of many of the

above methods (e.g. OVS, inner volume excitation) are also degraded in the presence

of field inhomogeneity and chemical shift effects, especially at high field strengths.

Since the above methods do not perfectly suppress lipids, post-processing meth-

ods were introduced to further minimize the residual lipids. A popular approach is to
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use k-space extrapolation using the high-resolution spatial support estimates [46,94].

This method provides acceptable spectral quality, when combined with inversion re-

covery lipid suppression [79]. Several authors have proposed dual-density acquisition

methods, coupled with dual-resolution reconstruction algorithms, to further improve

lipid suppression. The basic idea is to extend the k-space coverage to obtain narrower

point spread functions, which will translate to reduced lipid leakage [49,50,52,82,100].

However, high resolution is not SNR efficient for weak metabolite signals since they

cannot be recovered reliably from small voxels in a short acquisition time. Dual reso-

lution schemes acquire the central k-space regions with more averages, while the outer

k-space is sampled using fast trajectories. The data is recovered using dual-resolution

reconstruction algorithms which estimate the metabolite regions (within the brain) at

a lower resolution, while the lipid regions are estimated at a high spatial resolution.

The recovery of the lipid regions at high spatial resolution results in reduced lipid

leakage to regions within the brain. Since the lipid signal is considerably stronger

than the metabolites, the acquisition of outer k-space with lesser averages is often

sufficient to determine it accurately. While similar dual-resolution algorithms have

been successfully used by multiple researchers [11,32], all of them need to be coupled

with some form of lipid suppression. In addition, most of these methods are associ-

ated with smoothness priors, which result in low-resolution recovery of the metabolite

regions. To overcome such limitations recent works have focused on super-resolution

recovery of MRSI data. An overview of such super-resolution methods in MRSI is

available in [56,59].

In this work [9,10], we combine the dual-density spiral MRSI acquisition method

with a novel compartmentalized low-rank algorithm to recover metabolic images

with higher spatial resolution and minimal lipid leakage artifacts. We model the

field inhomogeneity compensated dataset as the sum of metabolite and lipid sig-

nals, each of which are only non-zero within the brain and extra-cranial regions,
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respectively. Since each of these signals arise from finite number of anatomical re-

gions with distinct spectral signatures, they can each be efficiently represented as

the linear combination of finite number of basis functions. We propose to organize

the metabolite and lipid signals as low-rank matrices, and their recovery from noisy

measurements can be regularized using nuclear norm penalties. Similar low-rank

methods have been recently introduced for signal recovery in many areas, including

MRSI [57, 58, 63, 64, 75, 85] and dynamic imaging [17, 42, 70, 71, 111]. Since low-rank

penalties do not explicitly impose spatial smoothness, the proposed scheme can min-

imize the blurring of the metabolite signals associated with dual-resolution recovery

methods such as [11,13,32,49,50,52,82,100]. The spectral signatures of the metabo-

lites and lipid signals are drastically different with different chemical shifts and T2

decay rates, and hence spectral broadening. Inspired by the work of Bilgic et al. [13],

we propose to decouple the subspaces without using the information of the spectral

support of lipids and metabolites. We consider the subspaces to be mutually orthog-

onal. We designed a variable density spiral sequence using the numerical algorithm

in [92]. This sequence enables us to acquire a 128x128 matrix with 288 radio-frequency

excitations in 7.2 minutes of acquisition time. The sequence acquires the central k-

space regions with 12 fold oversampling, while the outer k-space regions are acquired

at Nyquist sampling rate. The spiral sequence is a better alternative to Cartesian

dual-density acquisitions that combine data from separate scans [30,63,75,82]; since

all the data is acquired using a single sequence, no correction methods are needed.

We compare the performance of the proposed scheme to our dual-resolution recon-

struction scheme that relies on compartmental smoothness priors [32]. A simulated

phantom and in-vivo data with and without lipid suppression and TE=55 ms was

used to validate the method. The experiments show that the proposed method can

provide improved reconstruction than dual-resolution recovery schemes. Specifically,

it yields metabolite maps with higher resolution and minimal lipid artifacts, even
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when no lipid suppression is used.

2.2 Theory

We denote the underlying spatio-spectral function in MRSI by x(r, f), where r is

the spatial index and f is the spectral index. The measured signal from the jth coil

in k − t space is modeled as,

ŝj(k, t) =

∫
r∈Ω

∫
f

x(r, f) cj(r)e−i2πkre−i2π(f+∆f(r))tdrdf + ηi(k, t); j = 1, ..#Ncoils.

(2.1)

Here, r specifies the spatial location and t denotes time. ∆f(r) = γ4B0(r) is

the field-inhomogeneity induced chemical shift at the spatial location r. cj(r) is the

sensitivity of the jth coil, and ηi(k, t) is the white Gaussian measurement noise. Note

that the spatial integral is restricted to Ω, which is a mask that specifies the support

of the signal (e.g., head). The entire acquisition scheme can be compactly represented

as

S = AΩ (X) + η. (2.2)

The operator AΩ includes coil sensitivity encoding, k-space encoding, and spatially

varying chemical shift resulting from the field inhomogeneity. S is a matrix, whose

entries correspond to the measured k−t space samples. Here, X is the R×N Casorati

matrix derived from x(r, f), whose rows correspond to the N point spectra from pixels

within Ω:

X =



x(r1, f1) x(r1, f2) · · · x(r1, fN)

x(r2, f1) x(r2, t2) · · · x(r2, fN)

...
...

. . .
...

x(rR, f1) x(rR, t2) · · · x(rR, fN)


(2.3)

Here, R is the number of pixels in Ω. Any ordering of the rows of X may be considered.
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Compartmental low rank MRSI signal model: Several authors have proposed

to model the signal x(r, f) using low-rank methods [58,85]. Specifically, they assume

X in (2.3) to be low-rank. A challenge with the above modeling is the huge dy-

namic range of the signals x(r, f). The extracranial lipid signals are several orders of

magnitude stronger than the metabolites; low-rank modeling may result in the lower

principal components being captured by the lipid signals to account for the subtle

variations in the lipid signal. A high rank representation will hence be needed to

accurately represent the metabolites, which may make the model inefficient.

The lipid and metabolite signals that originate from disjoint spatial supports,

each have finite number of resonant frequencies arising from finite anatomical regions

inside the spatial compartments. We assume that the brain and lipid regions, denoted

by ΩM and ΩL respectively, to be known a-priori from water reference scans. We

denote the metabolite and lipid components of x(r, f) as

xM(r, f) = x(r, f) · χΩM
(r) (2.4)

xL(r, f) = x(r, f) · χΩL
(r) (2.5)

Here, χΩ is the characteristic function of the region Ω:

χΩ(r) =

 1 if r ∈ Ω

0 else.
(2.6)

Since the regions ΩM and ΩL are mutually exclusive, we have

x(r, f) = xM(r, f) + xL(r, f). (2.7)

Note that the dynamic range of the signals xM and xL are individually small, even

though the dynamic range of the signal x is very high. We construct matrices XM
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and XL similar to (2.3) from xM and xL by including only pixels from ΩM and ΩL,

respectively. We assume that XM and XL are individually low-rank; the compart-

mental low-rank model allows these matrices to be represented using distinct basis

functions and to independently control their ranks.

We observe that the spectra of the metabolite and lipid regions are highly dissim-

ilar, and hence orthogonal (i.e., 〈xL(r1, f), xM(r2, f)〉 = 0; ∀r1, r2). We are inspired

by the use of a similar prior in [13] to minimize the cross-talk between xM and xL.

Combining this prior with the decomposition in (2.7), we obtain

X = XM + XL; XL XH
M = 0, (2.8)

where XH is the conjugate transpose of the matrix X.

Recovery of the compartmental signal model from k-t space data: We pose

the recovery of the metabolite and lipid components from measured k-space data as

the optimization problem:

{XM ,XL} = arg min
XL,XM

‖AΩM
(XM) +AΩL

(XL))− S‖2︸ ︷︷ ︸
data consistency

+ λ1‖XM‖∗ + λ2‖XL‖∗︸ ︷︷ ︸
low-rank priors

,

such that XM ⊥ XL︸ ︷︷ ︸
orth. constraint

. (2.9)

Here ‖X‖∗ denotes the nuclear norm of X. The first term is the data consistency

term, while the second and third terms are the low-rank priors on the metabolite

and lipid signals, respectively. Note that we do not explicitly use the spectral priors

of the metabolite and lipid regions to discourage the cross-talk as in [63, 75]; the

cross-talk is automatically minimized by the use of the orthogonality priors. As

shown in [13], the use of the orthogonality priors will only cause minimal biases in

the metabolite signals. Note that we do not use detailed anatomical priors such

(e.g. masks of gray matter, white matter, and CSF regions) as proposed by several
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authors [6, 32, 51, 54, 56, 60, 72, 91]. However the above framework may be modified

to include such detailed anatomical information; we do not consider such priors to

minimize the risk of introducing biases. We replace the orthogonality constraint in

(2.9) by a penalty. Specifically, the inner-product between the metabolite and lipid

signals are penalized, weighted by a high regularization parameter β. The penalty

term would reduce to a constraint when β →∞.

We propose to solve the above problem using the iterative re-weighted least square

minimization (IRLSM) algorithm [34] for nuclear norm minimization. This approach

relies on approximating the nuclear norm penalty at the nth iteration as the weighted

Frobenius norm:

‖X‖1 ≈ ‖X Q‖2
F, (2.10)

where the weight matrix at the nth iteration is chosen as Q =
(
XH
n−1Xn−1

)−1/4
; where

Xn−1 is the solution of the nuclear norm minimization problem at the (n− 1)th iter-

ation. The matrix power is evaluated using eigen value decomposition. Specifically,

we perform eigen decomposition to obtain
(
XH
n−1Xn−1

)
= UΣUH and complete the

weight matrix as Q = USUH , where S = Σ−(1/4). To avoid division by zero, the

diagonal entries of S are stabilized as si = max (σi, ε)
−(1/4), where ε is a stabilization

constant. For the convergence of the solution, we require ε → 0 as n → ∞. When

a target rank K is desired, the stabilization parameter is chosen as ε = γ σK , where

0 < γ < 1. See [34,83] for details of the IRLSM scheme.

Using the IRLSM scheme to solve (2.9) amounts to solving the following quadratic

criterion at the nth iteration:

{XL,XM}n = arg min
XL,XM

‖AΩM
(XM) +AΩL

(XL))− S‖2 + λ1‖XM QM‖2
F

+ λ2‖XL QL‖2
F + β‖XM QO‖2

F︸ ︷︷ ︸
orthogonality penalty

. (2.11)
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The weight matrices matrices QM and QL are updated at the nth iteration using the

solutions {XM ,XL}n−1 as

QM = UM Σ̃
(−1/4)
M UH

M , where XMXH
M = UMΣMUH

M (2.12)

QL = UL Σ̃L
(−1/4)

UH
L , where XLXH

L = ULΣLUH
L . (2.13)

The diagonal entries of the matrices Σ̃M and Σ̃L are stabilized versions of the

entries of ΣM and ΣL, respectively, to avoid division by zero; i.e, Σ̃(i) = min(Σ(i), ε).

Equation (2.11) may be intuitively interpreted. If the matrices XM and XL are low-

rank and the singular values decay rapidly, QM and QL are projection operators onto

the noise subspaces of XM and XL (corresponding to insignificant singular values),

respectively. Thus, the second and third terms enable denoising by minimizing the

projection of the signals to the null-spaces, estimated from the previous iteration.

The projection matrix for orthogonality constraint QO in (2.11) is obtained as

QO = UL Σ
(1/2)
L UH

L , where XLXH
L = ULΣLUH

L (2.14)

2.3 Methods

2.3.1 Variable Density Spiral Spin-Echo Sequence

The k-space trajectories are designed using the numerical algorithm described

in [92]. We assumed a matrix size of 128× 128 and designed a variable density spiral

trajectory with 24 interleaves such that the lower k-space region of radius less than

16 is sampled at the Nyquist rate, while the higher k-space region is sampled at
1

12

times Nyquist rate. We used the above multishot trajectory with 12 averages. At each

average, we rotate the trajectories by
2π

24× 12
degrees. The acquisition scheme thus

corresponds to twelve fold averaging of the central k-space regions, while the higher

k-space region is Nyquist sampled. The above acquisition scheme can also be thought

of as a variable density spiral trajectory with 24× 12 = 288 spatial interleaves. The
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large number of spatial interleaves ensures that each interleave, along with the k-space

rewinders will be completed in 1.74 ms, which corresponds to a spectral bandwidth of

574.7 Hz (4.7 ppm). We use 256 temporal interleaves to achieve a spectral resolution

of 2.2 Hz. The k-space acquisition corresponds to three regions (a) lower k-space

region, whose acquisition takes around 35% of sampling time, (b) higher k-space

regions, which takes around 24% of time, and (c) gradient ramp down and rewinding,

which takes around 41% of time. We assumed a field of view of 240 mm, maximum

gradient amplitude of 22.4 mT/m, and a slew rate is 125 T/m/sec.

The sequence is illustrated in Fig. 1.

Figure 2.1: Pulse sequence diagram for spin echo based variable density spiral spec-
troscopic imaging: Water suppression is achieved using CHESS pulses. Slice selective
excitation and refocusing RF pulses are applied, followed by repeatedly playing out
the spiral gradients, ramp-down gradients, and rewinders.
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We use a slice selective spin echo sequence with CHESS water suppression. No

lipid suppression is used. The spiral readout and rewinder gradients were repeatedly

played out 256 times after an appropriate echo time. TR/TE were chosen to be

1500/55 ms. The total number of RF excitations required were 288 and the total

scan time is 7.2 mins. A separate water scan using the same sequence with TR= 500

ms is acquired in 2.4 mins of scan time; the data from this sequence is used to estimate

coil sensitivities, field inhomogeneity map, and the spatial supports of lipid and water

regions.

2.3.2 Digital Phantom for Validation

We developed a numerical MRSI phantom using the template and code in [40]. This

phantom with realistic anatomical features is discretized on a 512 × 512 Cartesian

sampling grid.

We assumed five spatial compartments, as shown in Fig. 3, including two lipid

compartments and three brain compartments corresponding to white matter, gray

matter and cerebral spinal fluid. We considered three metabolites; NAA at 2.008

ppm, Creatine at 3.027 and 3.913 ppm, and Choline at 3.185 ppm, as described

in [38]. Each compartment is assigned metabolite concentrations closely mimicking

the expected concentrations in normal brain [107]. A six peak lipid model [110] is

used to obtain lipid basis for the lipid compartments. The intensities of the lipid

peaks are assigned upto 500− 1000 times higher values than metabolites to replicate

lipid intensities in brain in absence of any lipid suppression methods and at short TE.

We also accounted for the T2 decay with appropriate parameters, which translates

to spectral broadening of the line shapes. We used a B0 inhomogeneity map using

fourth order polynomial in both the spatial dimensions. The Fourier samples of the

phantom are numerically evaluated at the k-t space points specified by the above

described spiral trajectory. The Fourier samples are corrupted by additive white

Gaussian noise.
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Figure 2.2: Construction of the digital phantom: The phantom is constructed with
five different spatial compartmental basis functions (Two lipid compartments, CSF,
white matter and gray matter ). Each of these compartments have a unique metabo-
lite or lipid spectrum associated with it. The metabolite spectra have peaks corre-
sponding to NAA (at 2.008 ppm), Creatine (at 3.027 and 3.913 ppm) and Choline
(3.185 ppm). We choose the concentration of the metabolites in different compart-
ments based on normal brain concentrations reported in literature. The lipid peaks
are constructed with a six peak model, reported in [110]. The lipid peaks are chosen
to be 500-1000 times larger in amplitude, in accordance to real data without lipid
suppression at short TE values. A field inhomogeneity map based on a polynomial
model is also used.
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To study the effect of lipid suppression, we considered two realizations of the

digital phantom (a) when the lipid signals are considered to be absent (or lipid

compartments are not considered) and (b) when the lipid signals are present. The

SNR of the k-t space data is 5.26 dB in (a) and 26.7 dB in (b); the higher signal

energy due to the presence of lipids translates to higher SNR in (b). We compare the

performance of Tikhonov regularized method and the proposed low-rank method for

both the realizations. The reference reconstruction in the metabolite region is chosen

as the gridding reconstruction of the k-t space data, without lipids and additive noise.

All the reconstructions are performed on a grid size of 96 × 96 and a field map is

estimated at the same resolution to correct for field inhomogeneity artifacts.

2.3.3 Recovery of MRSI Data Using Other Algorithms for Comparison

We compare the proposed method against the dual-resolution reconstruction scheme,

which relies on compartmentalized Tikhonov smoothness regularization [11,32]:

{XM ,XL} = arg min
XL,XM

‖AΩM
(XM) +AΩL

(XL)− S‖2︸ ︷︷ ︸
data consistency

+ α1‖∇ΩM
XM‖2 + α2‖∇ΩM

XL‖2︸ ︷︷ ︸
smoothness priors

.

Here, ∇ΩX denotes the spatial gradient of X, restricted to the spatial compartment Ω.

This method penalizes the spatial smoothness of the signal in the two compartments

to reduce leakage and cross talk between XL and XM . α1 and α2 are spatial regular-

ization parameters that control the resolution/smoothness in the metabolite and lipid

compartments, respectively. We consider two different settings for the choice of α1 for

the phantom experiments to demonstrate need for dual-resolution reconstruction and

the associated loss in spatial details. We consider a small value of α1, in this case 10−5

, which corresponds to minimal blurring of the metabolites; we refer to this setting as

the high resolution (HR) Tikhonov recovery. We also consider a higher value of α1,

in this case 10−3, which provides lower resolution recovery of the metabolites, which

is termed as low-resolution (LR) Tikhonov recovery; this is the choice considered
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in [32]. These settings translate to point spread function FWHM of 1 pixel and 2.5

pixels, respectively. In both cases, the parameter α2 is chosen as 10−5 to minimize

the smoothing of the lipid signals and to minimize the lipid contamination of XM .

We observe that this approach is a variational alternative to iterative methods used

in [49,50,52,82,100].

2.3.4 In-vivo Experiments

In-vivo experiments were performed on a 3T Siemens Trio scanner using a 12

channel receive head-coil under a protocol approved by the Institutional Review Board

(IRB) of the University of Iowa . Single slice proton MRSI data were collected from

two healthy volunteers, after receiving informed consent.

Subject 1: An oblique axial slice above the ventricles was acquired with a FOV of

240 × 240 mm2 and a slice thickness of 10 mm . This dataset is used to exhibit the

advantage of collecting high resolution encodes in reducing spectral leakage. Water

suppression was achieved using CHESS pulses, while the whole slice is excited without

any lipid suppression.

Subject 2: An oblique axial slice is selected containing the corpus callosum and the

lateral ventricles and was acquired with a FOV of 240×240 mm2. A lipid suppressed

dataset (with eight OVS bands) and another without lipid suppression were acquired.

The high resolution B0 inhomogeneity map, lipid images and water images are

estimated from the water reference data using GOOSE [22]. The water and lipid

images are thresholded to derive the lipid region ΩL and brain regions ΩM , respec-

tively. These masks are used in (2.9) to define the forward model and to construct

the matrices XM and XL. We first performed a gridding recovery, followed by the

estimation of the residual water using the HSVD algorithm [7]. The k-space signal

corresponding to the residual water signal was subtracted from the measured k-space

data before any processing.

We study the benefit in expanding the k-space coverage, using variable density spiral
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k-space trajectory in Fig. 2 using data from subject 1.

We truncate the k-space data to different sizes (radius 32, 64, 96 and 128), which

correspond to voxel sizes of 0.56, 0.14, 0.06 and 0.03 ml, respectively. We recover the

data from these four cases using gridding reconstruction algorithm on an image grid

size of 128×128. Post recovery, the metabolite data within the brain is smoothed with

an iterative algorithm. The smoothing parameters are selected such that the FWHM

of the PSF is 2.5 pixels. The NAA images are estimated using peak integration on

polynomial baseline suppressed data.

The regularization parameters in the proposed algorithm described in (2.11) are cho-

sen empirically to yield the best results for the experiments on data from subject

2. We observe that the parameter β can be assigned a high value to impose the

constraint of lipids being orthogonal to the metabolites; the performance of the algo-

rithm was observed to be relatively insensitive to this parameter, provided it is high

enough. As described earlier, λ1 controls the metabolite denoising, while λ2 controls

the lipid denoising. We observe that high values of λ2 will result in the attenuation

of the lipids in the lipid compartment, which will result in high spectral leakage; the

best results are obtained when λ2 are chosen around 100 fold lower than the value

of λ1. We manually tune the value of λ1 to get the best compromise between noisy

spectra and oversmoothed reconstructions. As described earlier, the choice of the

stabilization parameter requires a target rank. We chose the target rank to be 15 for

the metabolite signals, and 20 for the lipid signals. The parameter γ in the stabilizing

parameter equation ε = γσK , is chosen as 0.8 for both metabolites and lipids. All

reconstructions are performed at a grid size of 96× 96 and the metabolite maps are

obtained by peak integration over a bandwidth of 16 Hz.

2.4 Results

We study the utility of acquiring the data using variable density spiral k-space

trajectory with extended k-space coverage in Fig. 2 using data from subject 1. We
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(a) Spectra at the marked pixels 

(b) NAA Maps

Reference 

Image

Voxel Size (ml)

0.56 0.14 0.06 0.03 

Voxel Size (ml)

0.56 0.14 0.06 0.03

Figure 2.3: Benefit of extended k-space coverage in acquisition without lipid sup-
pression: The top figure (a) shows the spectra at three different locations (blue pixel
at the center of the brain, pink pixel between the center and skull, red pixel near
the skull or lipid layer). In the absence of lipid suppression, better lineshape and
reduction of lipid signal is achieved with increased k-space coverage. The peak inte-
gral NAA images in (b) demonstrates the decreased ringing artifacts with increasing
k-space coverage.
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show the reconstructed spectra from three different pixels within the brain, marked by

different colors in the reference image. Since no lipid suppression is used, the spectra

with 32x32 spatial coverage is highly distorted at all the three pixels. Specifically, the

signals from all the lipid regions with different field inhomogeneity induced shifts leak

over to each pixel within the brain; the weighted linear combination of the lipid spectra

appear as noise like artifacts. The experiments clearly show the benefit of extended

k-space coverage. With higher k-space encodes / smaller voxel size, the spectrum

at the blue pixel in the center of the brain are recovered with minimal distortion.

The pink pixel closer to the skull exhibits some lipid leakage, while the red pixel

close to the skull is corrupted by the extra-cranial lipids even with extended k-space

coverage. The reduction in leakage-induced ringing artifacts can also be visualized

from the NAA map. Since the extended k-space coverage alone cannot eliminate all

the spectral leakage artifacts, we propose to combine it with the compartmentalized

low-rank method to further reduce lipid leakage.

The phantom experiment results are shown in Fig. 4. The three methods under

comparison are the Tikhonov high resolution (Tikhonov HR) method, Tikhonov low

resolution (Tikhonov LR), and the proposed algorithm. The first column corresponds

to simulations without any lipid signal (perfect lipid suppression), while the second

column is the one with lipid signal (no lipid suppression). For comparisons, we recover

a reference data from the signals without any lipids and noise using gridding, followed

by field inhomogeneity compensation. The NAA maps for the three methods and

their error maps, and spectra at marked pixels are shown in Fig. 4(a) for lipid free

simulation and in Fig. 4(b) for simulation with lipids. For the lipid free case, we

observe that the Tikhonov HR method results in relatively noisy maps, while the

Tikhonov LR method oversmoothes the spatial maps, resulting in systematic loss of

edge information, seen from the error maps. The proposed method provides maps

with reduced noise and minimal blurring. These results can also be appreciated from
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(d) Lipid Maps for lipid unsuppressed case
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NAA 3.08% 5.20% 2.69% 42.73% 10.85% 2.88%

Creatine 3.29% 6.79% 3.34% 34.06% 10.15% 3.37%

Choline 3.47% 5.54% 2.38% 58.20% 21.54% 2.57%

Reference Tikhonov HR Tikhonov LR Proposed

Lipid Suppressed Case Lipid Unsuppressed Case

(a) NAA maps, error maps and spectra
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Reference

Image

(b) NAA maps, error maps and spectra

(c) RMSE table of metabolite maps

Figure 2.4: Simulated phantom experiments: We consider the recovery of the MRSI
phantom in Fig. 3 from its noisy k-space measurements on the spiral trajectory. The
case without lipid signals (corresponding to perfect lipid suppression) is shown on the
left column and the case with lipid signals (no lipid suppression) on the right column.
We compare the reconstructions obtained using Tikhonov HR, Tikhonov LR, and the
proposed method. The NAA maps and the corresponding error maps (scaled up) for
all the methods under comparison with and without lipids are shown in (a) and (b)
respectively. Also the spectra at 5 representative locations marked in the reference
image are shown for all the methods for lipid free and lipid unsuppressed case in (a)
and (b) respectively. The lipid maps for the case without lipid suppression is shown
in (d). Table (c) shows the RMSEs for the different maps.
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the spectra corresponding to the pixels marked on the reference image. The RMSE

(Root Mean Square Error) of the NAA maps are calculated to be 3.08% and 5.20%

for Tikhonov HR and Tikhonov LR respectively, while the proposed method has the

lowest RMSE of 2.69%. In the lipid unsuppressed phantom experiments shown in the

second column, we observe that the Tikhonov HR method is noisy and has severe

ringing artifacts (seen from the maps and spectra in Fig. 4(b)). The Tikhonov LR

method on the other hand reduces lipid leakage artifacts, but results in blurred maps.

It can also be seen from the error maps and the spectra that the pixels closer to

the skull have residual lipid artifacts in the Tikhonov LR method. By contrast, the

proposed method reduces noise and eliminates artifacts without smoothing the data

and retains most of the high resolution details. We observe that the Tikhonov HR

method has a poor RMSE of 42.73%, resulting from the extensive lipid leakage. The

Tikhonov LR method has a RMSE of 10.85% for NAA maps, while the proposed

method maintains a RMSE of 2.88%, which is comparable to the lipid suppressed

setting. The RMSEs of other metabolite maps are shown in the Table(c) in Fig. 4.

Thus the reconstruction quality of the proposed method is robust even in presence of

lipids.The lipid maps obtained by peak integration over lipid resonances are shown

in Fig. 4(d) for the lipid unsuppressed case.

The spatial priors and field inhomogeniety map obtained for the in-vivo experi-

ments are shown in Fig. 5.

Results for the in-vivo experiments with lipid suppression on subject 2 are shown

in Fig. 6.

The proposed method is compared against the Tikhonov LR scheme. From Fig.

6(a) it is seen that the Tikhonov regularized method has substantial lipid leakage

artifacts. Baseline suppression reduces some lipid leakage, but the maps suffer from

spatial blurring. The proposed method on the other hand has negligible lipid leakage

artifacts and results in high resolution maps retaining spatial details. Considering that
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Hz

(b) B0 inhomogeneity map(a) Contours of spatial supports of metabolite and lipids

Figure 2.5: Priors estimated from water reference data for subject 2, used by the
reconstruction algorithm for the results in Fig. 6 & 7. (a) The contours of the
metabolite region without saturation bands is shown in red, while the contour after
application of saturation bands is shown in green.The lipid mask contour is outlined
in white. The field map recovered from the water reference data is shown in (b).

detailed anatomical priors such as supports of gray matter, white matter, and CSF

are not used in the recovery, the ability of the algorithm to recover the spatial details

is significant. The lipid maps obtained by peak integration of the lipid resonances are

shown for the Tikhonov method and the proposed method. The Tikhonov method

shows heavy lipid leakage in regions close to the skull whereas the lipid leakage is

negligible for the proposed method. The spectra at the pixel grid marked in the

reference image are shown for the Tikhonov regularized method in Fig. 6(b) and for

the proposed method in Fig. 6(c). Similar to the results of the phantom simulation,

the spectra obtained from Tikhonov method are noisy and have spectral leakage

especially in pixels close to the skull. By contrast the proposed method denoises the

spectra and removes all spectral leakage. The topmost two pixels close to the skull

does not seem to have any metabolite signal, resulting from OVS suppression.

The comparison of the proposed method and the Tikhonov LR method is shown

in Fig. 7 for the lipid unsuppressed dataset from the same subject.

The metabolite maps in Fig. 7(a) show quite significant lipid leakage for the

Tikhonov regularized method. Even after baseline removal, lipid leakage artifacts are
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(a) Metabolite and lipid maps 

(b) Tikhonov Method : Spectra 

(c) Proposed Method : Spectra 

Figure 2.6: In-vivo experiments with lipid suppression: The metabolite maps and
the lipid maps are shown for the Tikhonov method and proposed method in (a).The
metabolite maps obtained from the Tikhonov method with residual lipids removed by
polynomial baseline (BL) removal is also shown. Spectra from the locations marked
in the reference image are shown in (b) for the Tikhonov method (in blue) and in (c)
for the proposed method (in red).



www.manaraa.com

27

4 3 2 1 ppm

4 3 2 1 ppm

NAA Creatine Choline Lipid

P
ro

p
o

se
d

 
T

ik
h

o
n

o
v

 -
B

L
 

T
ik

h
o

n
o

v

Reference

Image

(b) Tikhonov Method : Spectra 

(c) Proposed Method : Spectra 
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Figure 2.7: In-vivo experiments without lipid supression: The metabolite maps and
the lipid maps are shown for the Tikhonov method and proposed method in (a).The
metabolite maps obtained from the Tikhonov method with residual lipids removed by
polynomial baseline (BL) removal is also shown. Spectra from the locations marked
in the reference image are shown in (b) for the Tikhonov method (in blue) and in (c)
for the proposed method (in red).
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present and spatial blurring can be observed . The proposed method is seen to recover

the data with minimal lipid leakage artifacts. The spectra at the pixels marked in the

reference image are shown in Fig. 7(b) & (c) for Tikhonov LR and proposed method

respectively.

The comparison of, the spectra obtained by Tikhonov method for the lipid sup-

pressed data after baseline suppression, and the proposed method is shown in Fig.

8.

(a) Proposed-lipid suppressed (red ),

Tikhonov BL removed - lipid suppressed (black)

3 2 ppm

Reference Image

3 2 ppm

(b) Proposed-lipid unsuppressed (red )

Tikhonov BL removed - lipid suppressed (black)

Figure 2.8: Comparison of spectra from proposed method with and without lipid
suppression against Tikhonov method with lipid suppression: (a) Spectra recovered
by the proposed method from lipid suppressed data is plotted in red (spectra in Fig.
2.6.c in the range 4-1.7 ppm), while the spectra recovered by Tikhonov method from
lipid suppressed data after baseline (BL) removal (of spectra in Fig. 2.6.b) are plotted
in black. (b) Spectra at the locations marked in the reference image recovered by the
proposed method from lipid unsuppressed data (spectra in Fig. 2.7.c in the range 4-
1.7 ppm) is plotted in red, while the spectra recovered by Tikhonov method from lipid
suppressed data after baseline (BL) removal (of spectra in Fig. 2.6.b) are plotted over
in back. We emphasize that the black spectra (Tikhonov) in both plots are derived
from lipid suppressed data. These plots show that the proposed method can enable
the recovery from lipid unsuppressed data.

The spectra recovered by the proposed method for the lipid suppressed case are
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plotted in red, after truncation at 1.7 ppm in Fig. 8(a), whereas the Tikhonov method

results after baseline removal for the lipid suppressed data are plotted in black. Fig.

8(b) shows the comparison of the proposed method for the lipid unsuppressed data (in

red) with Tikhonov method results for lipid suppressed data after baseline removal (in

black). The spectral lineshapes are similar in both cases and also the spectral quality

of the proposed method is comparable for both lipid suppressed and unsuppressed

case.

2.5 Discussion

We introduced a novel compartmentalized low-rank based algorithm and a spiral

dual-density MRSI sequence for reconstruction of high resolution MRSI reconstruc-

tion without lipid suppression. The proposed method enables the recovery of high

resolution metabolite maps with minimal lipid leakage artifacts from short echo time

acquisitions even in the absence of lipid suppression. This approach may be useful in

three dimensional acquisitions, when the placement of OVS bands for lipid suppres-

sion is difficult. The ability of the scheme to work in short echo time may improve

the detection of metabolites with spin-coupled system and also results in improved

SNR.

Low rank methods have been used in MRSI by several groups for denoising [85]

and reconstruction [58, 63, 64, 69, 75]. The direct use of global low-rank methods as

in [58] may be challenging in our lipid unsuppressed setting. In the dual-density sam-

pling setting we would like to constrain the low SNR metabolite regions much more

than the high SNR lipid signals; a single subspace would be dominated by lipid basis

functions due to the huge dynamic range between the lipid and metabolite signals.

The proposed single step compartmentalized low-rank algorithm shares conceptual

similarities to two step low-rank methods in [63,64,75]. These methods estimate the

basis functions from low spatial resolution data, which are separated into metabolite

and lipid basis using spatial and spectral prior information in the first step; these basis
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sets are used for the recovery of the signals from high-resolution measurements in the

second step. While good recovery is demonstrated using OVS and long TEs to reduce

lipid signals, the direct use of these methods in our setting (no lipid suppression and

short TE) may be challenging. Specifically, good separation of the metabolite and

lipid basis functions from low spatial resolution data may be difficult when no lipid

suppression is used; lipid signals may be present in all spatial regions, which will limit

the utility of spatial priors. In addition, these methods may also be vulnerable to large

field inhomogeneity induced variations, which are usually present in the extra-cranial

regions. Specifically, the field map induced spectral shifts will translate to spectral

distortions of lipid and metabolite signals, which may make it difficult to separate

the lipid and metabolite basis sets using spectral prior information. In contrast to

the above methods, the proposed method aims to estimate the basis functions from

all the available k-space encodes using the orthogonality between the metabolite and

lipid signals. This work is inspired by the use of orthogonality constraints introduced

in [13], where the lipid and metabolite signals are shown to have strikingly different

spectral signatures (e.g. metabolite signals are highly localized in frequency, while the

lipid signals are very broad due to the fast T2 decay). The distinction between these

signals are preserved even in the presence of field inhomogeneities. The use of these

priors, along with field inhomogeneity compensation, enables the recovery of metabo-

lite data with minimal leakage, even in the absence of lipid suppression. No other

algorithm is capable of recovering the MRSI signals without any lipid suppression

schemes to the best of our knowledge.

The dual-density acquisition method is inspired by [2, 100]. This approach cap-

italizes the considerably higher signal intensity of lipids than the metabolites. The

variable density spiral approach is more reliable than dual-density Cartesian scans,

which requires sophisticated data registration and data mismatch correction to com-

bine data from different acquisitions [30, 63, 64, 75, 82]. Our future work will include
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the use of only a subset of the 288 interleaves, which corresponds to Nyquist sam-

pling of lower k-space regions and subsampling of higher k-space regions. We expect

the compartmentalized low-rank method, bolstered with parallel imaging [68, 109],

to provide good recovery even in this setting. The efficiency of our current sequence

may be improved by using more spectral interleaves. Specifically, around 40% of the

acquisition time is now devoted for ramping down the spiral gradients and rewinders.

The use of spectral interleaves may enable us to increase the efficiency, which will

translate to improved SNR efficiency.

2.6 Conclusion

We introduce a novel compartmentalized low-rank algorithm with orthogonality

constraint which enables reconstruction of high resolution metabolite maps without

the use of any lipid suppression methods. The proposed method is effective at short

TE (55 ms) acquisitions also. Also an efficient dual-density data acquisition method

using variable density spirals has been introduced to achieve high resolution lipid

estimates in a feasible scan time.
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CHAPTER 3
DENOISING AND DEINTERLEAVING OF EPSI DATA USING

STRUCTURED LOW-RANK MATRIX RECOVERY

3.1 Introduction

Echo-planar spectroscopic imaging (EPSI) [12, 33, 95, 96], which relies on echo-

planar readouts to simultaneously encode one spectral and one spatial dimension, is

a popular approach for rapid MRSI. Spectral interleaving is often used to simultane-

ously achieve high spectral and spatial resolution, which is an important need on high

field systems that offer higher signal to noise ratio and higher chemical shift disper-

sion. Specifically, multiple datasets acquired with low temporal sampling rate, but

with different temporal shifts between the readouts; the interleaves are later interlaced

to construct the final spectrum. A challenge in this approach is the phase inconsis-

tencies between the interleaves, resulting from timing errors in the applied gradient

trains, drifts in the magnetic field, and field inhomogeneity distortions. These er-

rors often manifest as spurious Nyquist ghost peaks in the spectral domain (see Fig.

3.1 for details); the associated line-shape variations and baseline fluctuations often

make the quantification of relatively weak metabolites rather challenging. We intro-

duce a novel correction strategy, which exploits the annihilation relations resulting

from phase relations between the interleaves and linear predictability of exponential

signals.

Shortening scan time has been a prime focus of magnetic spectroscopic imaging

(MRSI) research [9,10]. EPSI [31] achieves accelerated data acquisition by using echo-

planar readouts to simultaneously encode one spectral and one spatial dimension in

one acquisition. This approach offers a speed up that is equal to number of points

along one spatial dimension. However, it imposes high demands on the gradient sys-

tem to maintain sufficient spectral resolution on high field systems that have greater

spectral dispersion. A common practice to achieving sufficient spectral resolution is

spectral interleaving, where the readouts are delayed in time for each spectral inter-
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leave. The data from multiple interleaves are upsampled and interlaced to form the

final spectrum. A challenge associated with this strategy is the phase inconsisten-

cies between interleaves, resulting from timing errors in the applied gradient trains,

drifts in the magnetic field, and dependence on field inhomogeneity distortions. This

problem is similar to Nyquist ghosting artifacts in echo-planar imaging (EPI), which

manifests as Nyquist ghosts in the phase encoding dimension. In EPSI acquisitions,

the phase inconsistencies manifest as spurious peaks in the spectra, which often makes

the interpretation of the data challenging. Specifically, the proximity of a spurious

peak from a strong metabolite may result in lineshape changes, affecting the accurate

quantification of a relatively weak metabolite. Likewise, the intensity of the true peak

may also be reduced since the energy is split between the true peak and ghost peak.

Several methods have been developed for the reduction of spectral ghosts in EPSI

data. The conventional approach processes the odd and even echoes separately [101]

reducing the spectral bandwidth by half; hence is not an option for high field scan-

ners. Methods relying on theoretical estimates of k-t space trajectory such as the

interlaced Fourier transform method [81] or the Fourier shift method [45] ignore the

phase distortion between the echos. Echo misalignment [81,101] correction has shown

good potential in the reduction of spurious peaks, contingent to accurate estimation

of k-t space trajectory that is often not practical in the presence of drifts and B0 in-

homogeneity. Another popular method is to estimate the phase inconsistencies from

the center of k-space and correct for the misalignment between the echoes [26] during

data processing. Even though this method has shown promise in fat-water imaging,

its utility for low-intensity metabolites is yet to be seen.

We introduce a novel reconstruction method for EPSI data which does not depend

on accurate estimates of phase inconsistencies or k-t space trajectory to suppress the

spectral ghosts. We exploit the annihilation relations in spectrally interleaved EPSI

data resulting from the linear predictability of exponential signals and phase relations
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between the interleaves. We pose the problem as a recovery of two signals at each

pixel, corresponding to the odd and even interleaves. The proposed framework is

inspired by our MUSSELS strategy used in multishot EPI acquisitions [76], which is

conceptually similiar to [66, 73]. Unlike these methods [66, 73, 76] that rely on coil

sensitivity information or signal smoothness to avoid the trivial solution resulting

from uniform undersampling, we rely on the annihilation property due to linear pre-

dictability of the exponentials. We construct a block Hankel matrix, whose entries

correspond to the two echoes, that capture the annihilation relations in a compact

way; the annihilation relations translate to a low-rank block Hankel matrix, which we

recover from undersampled measurements using structured nuclear norm minimiza-

tion.

We demonstrate the results of the proposed method using several datasets. High

resolution 13C MRSI data of mouse kidney acquired at 9.4T using bipolar EPSI

readout gradients is used for the first experiment. The proposed methods show im-

provement in the signal of Pyruvate maps due to recovery of real spectral peaks and

reduction of spurious peaks leading from combination of odd and even echoes. The

second and third set of experiments were conducted on high resolution 1H in-vivo

MRSI data collected at 3T using flyback trajectories. The two datasets were col-

lected at different spatial resolution and spectral bandwidth. The proposed method

show increased SNR for the metabolite maps and removal of spurious signals.

3.2 Theory

3.3 Background

We assume that the true spectrum at a specified pixel r as a multi-exponential

model:

ρ[r, n] =
K∑
k=1

ck[r] (νk)
n ; n = 0, .., N − 1 (3.1)
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Figure 3.1: Spectral interleaving using flyback EPSI: (a) For each excitation kx −
t space is traversed simultaneously during readout time. This example shows kx
dimension = 8, (b) By doubling the spatial resolution i.e,kx dimension =16, each
interleave takes twice the time which results in half spectral bandwidth. Thus two
interleaves are used (red and green) as on combination bandwidth is preserved.

where K is the number of exponentials with parameters

νk = exp

{
−

(
1

T ∗2,k
+ j2πfk

)
T

}
, (3.2)

and ck are amplitudes. Here
(

1
T ∗
2,k

+ j2πfk

)
are the exponential parameters of the kth

exponential and T is the Nyquist sampling interval. We will omit the dependence of

the signal on the spatial location for simplicity in the future discussions. The Fourier

transform of the signal along n, specified by

ρ̂[k] =
N∑
n=1

ρ[n] exp

(
−j 2π

N
kn

)
(3.3)

will have K peaks at frequencies fk; the basic goal in MR spectroscopy is to estimate

the amplitudes ck from the data.

Since the bandwidth of the spectrum is too large in high field scanners, it is
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often impossible to sample the signal at the Nyquist rate using EPSI. It is a common

practice to acquire the data using spectral interleaving, where the signal is sampled

twice with a sampling interval of 2T . Specifically, one would acquire two signals ρo[n]

and ρe[n], where the readout of the odd signal is delayed by T , These signals are later

combined as

ρcombined[n] =

 ρe[n] if n is even

ρo[n] if n is odd
(3.4)

Unfortunately, ρe and ρo are acquired at two different acquisitions and hence would

differ in terms of a phase distortion. The distortion is often a complex function of

the readout delay T and the field inhomogeneity at the spatial location r. Hence,

the combined signal (3.4) often suffers from spectral ghosts, shifted from the original

point by N/2 spectral points; the distribution of the amplitudes to the two peaks

is dependent on the phase distortion. A schematic diagram explaining the signal

formation is shown in Fig.3.2.

3.4 Methods

We introduce an algorithm for the removal of spurious peaks as well as the de-

noising of spectroscopic MRI data. The algorithm exploits the annihilation relations

induced by the spectral model (3.1) as well as the phase relations in (3.5) & (3.6).

We use a lifting strategy, where a structured matrix is formed using the entries of

the measured signals ρe and ρo to exploit the annihilation relations. The rank of

the structured matrix is very low due to the annihilation relations. We use the low-

rank property to jointly recover the fully sampled signals ρe[n];n = 0, .., N − 1 and

ρo[n];n = 0, .., N − 1 from their undersampled measurements.

We model the phase distortions in ρe and ρo as convolutions by finite impulse

response filters ge[n] and go[n], respectively. Specifically, we assume that

ρ̂e[k] = ρ̂[k] ĝe[k] (3.5)
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ρ̂o[k] = ρ̂[k] ĝo[k], (3.6)

where the signals ge[k] and go[k] are specified by

g[k] =
M∑

p=−M

c[k] exp

(
−j 2πpk

N

)
(3.7)

Note that the above model can easily account for differences in phases and differences

in frequencies in a small range determined by T , between the two acquisitions.

3.4.1 Annihilation Relations Induced by Exponential Model

Exponential signals in (3.1) satisfy an annihilation relation [5, 106]:

ρ[n] ∗ h[n] = 0, (3.8)

where h is the FIR filter of the form

h(z) =
K∏
i=1

(
1− νkz−1

)
. (3.9)

Since ρe(z) = ρ(z)he(z) and ρo = ρ(z)ho(z), both of these signals also satisfy (3.8)

with the same filter. The convolution relation in (3.8) can be expressed as in the

matrix form as Qeh = 0 and Qoh = 0, where Qe and Qo are (N − K + 1) × K

dimensional Hankel matrices formed from the samples of ρo and ρe, respectively. In

reality, the number of exponentials K is unknown, when one can overestimate it as

P . In this case, any filter specified by hn(z) = h(z)η(z) such that hn is a P tap filter

also annihilates the signal. Since one can find P −K linearly independent filters η(z),

the rank of the (N − P + 1) × P dimensional matrices Qo and Qe can be shown to

be equal to K − 1 (see [5] for details).
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Figure 3.2: The FID at each pixel rho are corrupted by different phase distortion
functions φ1 & φ2 before combining the odd (ρo) and even (ρe) as shown in the data
acquisition block as described in Eqn:3.4. Standard schemes form the interleaved
signal ρcombined as shown in the reconstruction block. We propose to replace the
reconstruction by Eqn: 3.13.

3.4.2 Annihilation Property Induced by Phase Relations

The model specified by (3.6) and (3.5) implies that there exists annihilation rela-

tions between the two signals

ρe[n] ∗ go[n]− ρe[n] ∗ ge[n] = 0. (3.10)

This annihilation relation can be represented in the matrix form as

[Qe,Qo]︸ ︷︷ ︸
Q

 go

−ge

 = 0, (3.11)

where Qo = T (ρo) and Qe = T (ρe) are (N −M + 1) ×M dimensional convolution

(Hankel) matrices obtained from the samples ρo[n] and ρe[n], respectively.

In reality, one often does not know the precise value of M needed to model the

phase distortion; we overestimate the support to P ≥M . In this case, there are mul-

tiple annihilation relations, involving filters g̃o(z) = go(z)γ(z) and g̃e(z) = ge(z)γ(z),
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where γ(z) is an arbitrary filter such that h̃o(z) and h̃e(z) are still support limited

within M . This implies that the matrix H is low-rank.

We note that the combined lifting will benefit from both the exponential structure

and phase relations. Specifically, we have

[Qe,Qo]︸ ︷︷ ︸
Q

 go ∗ γ h ∗ η 0

−ge ∗ γ 0 h ∗ η

 = 0, (3.12)

Both the annihilation relations together result in a matrix with small rank.

3.4.3 Proposed Structured Low-Rank Algorithm

We use the low-rank structure of Q to recover the two signals µo and µe from

their undersampled measurements:

{µo,µe} = arg min
µo,µe

‖Ao(µo)− ρo‖2 + ‖Ae(µo)− ρe‖2 + λ1

Npixels∑
i=1

‖
[
T (µ(i)

o ), T (µ(i)
e )
]︸ ︷︷ ︸

Q

‖∗

+ λ2

‖µo‖∗ + ‖µo︸ ︷︷ ︸
Casortai low-rank

‖∗

 (3.13)

where Ao and Ae are undersampling operators corresponding to ρo and ρe, respec-

tively. We use an iteratively reweighted nuclear norm minimization algorithm to

minimize the above cost function and recover the signals.

The third term synergistically uses the spectral & phase-induced annihilation

relations, enables the removal of phase errors and provides spectral denoising. The

combination of priors also eliminates the trivial solution introduced by structured

sampling [73]. The last term is the sum of nuclear norms of the Casoratti matrices

µo and µe, which facilitates in further spatial denoising high resolution MRSI data.

Post recovery, we use root mean square of µo & µo as the recovered signal. Since

exponential signals with fewer exponential parameters are associated with lower rank,
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the proposed formulation performs simultaneous denoising and deinterleaving.

The periodic undersampling pattern that results from interleaved sampling may

result in a trivial solution, if the spectral annihilation relations are not exploited [73].

Specifically, the trivial solution µo = ρcombined = µe will satisfy the data consistency

relations and the trivial annihilation relation µe[n]∗δ[n]−µe[n]∗δ[n] = 0, resulting in

a matrix of rank P . However, when the signal follow a multiexponential model as in

(3.1), we observe that the trivial solution has 2K (double the number of exponential

parameters), when compared to the true solution due to aliasing. This shows that

the trivial solution is not the one that satisfies the data consistency constraints and

yield the minimum rank of Q. We study the impact of the different priors in Fig.

3.3, where we set P = 15. In the top row, we study the effect of the phase relations

alone. We consider a random signal that does not follow a multipeak model, while

ρe and ρo are related to the random signal by a phase term. In this case, Qe and

Qo are full rank matrices (rank 15 each). The presence of the phase relations (3.11)

results in 15 nullspace vectors, and hence the combined matrix Q is of rank P = 15.

In this case, we observe that the trivial solution obtained by interleaving also results

in 15 null space vectors and hence the corresponding Q is also of rank P = 15. The

structured low-rank method fails in this case.

In the second row, we study the impact of the the linear predictability alone. We

consider two four peak signals ρe and ρo that are not related by a phase term. The

peaks are at different locations. In this case, Qe and Qo are of rank k = 4 each. The

concatenated matrix does not have any additional null space filters since there are no

phase relations; the rank of the true Q matrix 2K = 8, which is equal to the sum of

the ranks of Qe and Qo. The zero filled signals have eight peaks each and does not

satisfy any null space relations, thus resulting in a rank of P = 15. The combined

signal has 16 peaks each, but satisfies 15 null space relations, resulting in a rank of

P = 15. The recovery fails in this case as well.
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In the third row, we study the case with both linear predictability and phase

relation. In this case, Qe and Qo are of rank k = 4 each, with the null spaces

overlapping. The presence of the phase induced annihilation relations result in null

space vectors, but several of them are linearly related. The rank of Q is equal to

K in this case, which is much smaller than that of the interleaved signal as well

as the zero filled case. In this case, we observe that the nuclear norm recovery

succeeds, thus enabling the recovery of the signals. These experiments show that

both linear predictability and phase relations are required for the successful recovery

of the spectra.

Figure 3.3: Simulated Experiment: We study 3 cases to understand the effect of
annihilation priors. Case1 : Random signal that does not follow a multipeak model
related by phase term. This case fails as the true rank is too high. effect of annihilation
priors. Case2 : Two multipeak signals which are not related by phase term. This
only exploits linear predictability and does not have enough null space vectors and
thus fails. Case 3: Multipeak model with phase relation. This case exploits both the
annihilation relations and has enough null space vectors to achieve recovery.



www.manaraa.com

42

3.5 Experimental Methods

In this study we have used three in-vivo datasets to validate the proposed algo-

rithm. We start with a simpler MRSI dataset of 13C Hyperpolarized mouse kidney

which has decent SNR for the main metabolite peak of pyruvate. We then extend

our studies to 1H MRSI subject scans which are highly SNR deprived and has ad-

verse effects arising from spurious peak formation. We also tested our algorithm on

EPSI using both bipolar readout gradients (13C Hyperpolarized data) and flyback

trajectories (1H MRSI data).

Dataset 1: Hyperpolarized 13C mouse kidney MRSI All experiments were

performed using 9.4T small animal imaging scanner (Bruker BioSpin MRI GmbH,

Germany) equipped with 1H-13C dual-tuned mouse volume Tx/Rx coil. [1-13C] pyru-

vic acid doped with 15mM Trityl radical and 1.5M Dotarem was polarized for 1 hour

using HyperSense DNP polarizer (Oxford Instruments, Oxford, UK). Hyperpolarized

sample was dissolved with Tris/EDTA-NaOH solution, and 350ul of pyruvate was

injected into Balb/c mouse through tail vein catheter over duration of 5s. 3-mm

thickness of axial-oriented slice containing mouse kidney was selected, and the scan

was started at 5s after injection of the pyruvate. All procedures of the animal ex-

periments were approved by the local animal care and use committee. Echo-Planar

Spectroscopic Imaging (EPSI) with bipolar readout gradient (called as D2 dataset,

sparse sampling in spectral domain). Field map was also acquired for B0 inhomo-

geneity compensation. This data was collected at Yonsei Univeristy, South Korea.

Dataset 2: 1H MRSI in-vivo experiments at resolution 32× 32 A volunteer

was scanned with a GE MR750W 3T scanner at the University of Iowa using a

32-channel head coil under a protocol approved by the Institutional Review Board

(IRB) of the University of Iowa. Single slice proton MRSI data were collected from

one healthy volunteer, after receiving informed consent. An oblique axial slice above
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the ventricles was acquired with FOV = 220×220 mm2 and a slice thickness = 10 mm.

PRESS box based excitation is used to collect data using flyback EPSI trajectories.

The center of the brain is excited such that signals from lipid layer are avoided. A

matrix size of 32×32 is collected with 512 spectral points using 2 spectral interleaves

resulting in a effective bandwidth of 1000 Hz. The TR/TE for the dataset is 1000/30

ms. 8 averages are collected resulting in total scan time of 8 mins. The residual water

was removed in the post-processing stage.

Dataset 3: 1H MRSI in-vivo experiments at resolution 64 × 64 Another

dataset is collected similar to Dataset 2. A matrix size of 64 × 64 is collected with

256 spectral points using 2 spectral interleaves resulting in a effective bandwidth of

595 Hz. The TR/TE for the dataset is 1000/30 ms. 8 averages are collected resulting

in total scan time of 16 mins. The residual water was removed in the post-processing

stage.

Reconstructed Data compared with Phase Correction Method We com-

pared the reconstructed results with popular phase correction methods. An estimate

of the phase inconsistency is generated from the data and is used to correct for the

spurious peaks. However this method does not achieve denoising which is unavoidable

for high resolution EPSI.

3.6 Results

We study the performance of the proposed algorithm across three different datasets

and especially one at high field strength where increased spectral dispersion demands

interleaving. We also test the other aspect of EPSI which is low SNR at higher

resolution which makes it challenging.

We report our observation for the first set of experiments on 13C mouse kidney

dataset in Fig. 3.4. The proposed method and the classical phase correction methods
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are compared. In this dataset we are concerned about the Pyruvate signals at high

resolution. The spurious peak map, which corresponds to the intensity distribution

at the frame at which the spurious peak of Pyruvate appears is shown for the uncor-

rected, phase corrected and proposed method in (b) -(d) respectively. It is clear that

the proposed method shows improved performance in removing the spurious peaks

which is exemplified by the reduced intensities in that frame whereas phase correc-

tion method ks unable to completely remove it. The Pyruvate metabolite map for the

three methods in (f)-(h), on the other hand, show improved SNR for the proposed

method as shown by the arrows in (h). For a better demonstration of the improved

Pyruvate SNR, we report percentage intensity increase map in (e) which is achieved

by calculating
‖Pyruvateproposed − Pyruvateuncorrected‖

‖Pyruvateuncorrected‖
× 100. It shows upto 70 %

increase in intensities, especially in the edges of the kidney.

In Fig. 3.5 the spectra at three reference pixels (reference image in Fig.4(a))

are plotted for the three methods. It can be observed that the phase correction

method is successful in removing spurious peaks from most pixels but has suboptimal

performance for the renal medulla pixel. Also it does not provide any denoising.

The proposed method on the other hand removes all spurious peaks in addition to

denoising the spectra which is neccessary for high resolution EPSI data. For this

experiment only Toeplitz low rank structure was able to provide enough denosing

and thus Casorati constraint was not applied.

It should also be noted that the increased SNR is because the signal energy is

restored in the original peak location by the proposed method which otherwise is

split between real and spurious peak in the uncorrected data. This also shows the

application of the proposed method at high field strength magnets.

We study the performance of the proposed method on a in-vivo 1H MRSI dataset

collected at a resolution of 32x32. We do not compare the performance of the pro-

posed method with phase correction method for the 1H datasests as it performs
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sub-optimally for the relatively higher quality 13C dataset. The major challenges of

this dataset include low SNR and the huge spurious peak of water which is comparable

or more powerful than the metabolites.

Three metabolite maps corresponding to NAA, Creatine and Choline and the

spurious peak frame are reported in Figure. 3.6 in the two rows corresponding to

the uncorrected and the proposed method. As can be observed the proposed method

shows much improved SNR and preserves high resolution details like better delination

of the ventricles. The Creatine and Choline maps for the uncorrected data have poor

demarcation of the ventricle details which are preserved by the proposed method.

The spurious peak frame of water shows remarkably reduced intensity which denotes

better removal of spurious peaks.

Fig. 3.7 shows the spectra corresponding to the reference pixels marked in the

image. It is evident that the spectra for the uncorrected data is corrupted by high

noise level along with huge spurious peaks especially in the ventricles. The proposed

method on the other hand uses two low rank structures, i.e Toeplitz and Casorati

resulting in high quality spectra and removal of all spurious peaks.

Our final set of experiments are performed on a very high resolution 1H MRSI

dataset of matrix resolution 64 × 64. This dataset has a bandwidth of 600 Hz, such

that the spurious peak of water appears in between NAA and Creatine, thus making

the deinterleaving process more challenging.

The three metabolite maps and spurious peak frame shown in Fig. 3.8 for the three

methods show high noise levels for the uncorrected data. The spatial details are not

resolved without denoising. The proposed method recovers maps with improved SNR

and as can be seen very high resolution spatial details are recovered. The spurious

peak frame again has reduced intensities for the proposed method showing successful

deinterleaving.

The recovered spectra for the the three methods are shown in Fig. 3.9 for the
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reference pixels marked in the image. This dataset is particularly challenging because

of the very low SNR and the spurious peak formation between NAA and Creatine. The

performance of the proposed method is superior to in both the aspects of improving

SNR and removing the spurious peaks.

3.7 Conclusion

In this work we proposed a novel algorithm for denoising and deinterleaving of

EPSI data without directly estimating phase or relying on theoretical k-space tra-

jectory. We further demonstrated the improvement offered by the proposed method

compared to the classical phase correction method. The proposed scheme would be

highly beneficial in reconstruction and correction of high-resolution EPSI, especially

for the acquisition from high field magnets.
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Figure 3.4: Metabolite maps: (a) 1H reference image of mouse kidney with reference
pixels marked in three regions. (b-d) Intensity map at the spurious peak correspond-
ing to Pyruvate and (f-h) Pyruvate maps, for the uncorrected data, phase correction
method and proposed method respectively. (e) Map showing percentage increase of
signal intensity provided by proposed method compared to uncorrected data. Pixels
show upto 70% increase.
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Figure 3.5: Metabolite spectra: First (a-c), second (d-f) and third (g-i) row show the
spectra at aorta, renal cortex and renal medulla respectively (refernce pixel location
marked in Fig.3.4(a)) for the uncorrected data, phase correction method and the
proposed method respectively.
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Figure 3.6: Metabolite maps: (a-c) Metabolites maps generated from the uncorrected
data by peak integration. The three maps correspond to NAA, Creatine and Choline.
(e-g) The maps corresponding to the proposed method showing improved SNR. (d)
& (h) correspond to the spurious peak frame for the uncorrected and corrected data
respectively.
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Figure 3.7: Metabolite spectra: First row shows a reference image with the pixel
locations for the representative spectra marked. The first row shows the spectra from
the uncorrected data which is noisy and has a stromg spurious peak near 1 ppm. The
second row showing the spectra from the proposed method show reduced noise and
complete removal of spurious peaks.
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Figure 3.8: Metabolite maps: (a-c) Metabolites maps generated from the uncorrected
data by peak integration. The three maps correspond to NAA, Creatine and Choline.
(e-g) The maps corresponding to the proposed method showing improved SNR. (d)
& (h) correspond to the spurious peak frame for the uncorrected and corrected data
respectively.
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Figure 3.9: Metabolite spectra: First row shows a reference image with the pixel
locations for the representative spectra marked. The first row shows the spectra from
the uncorrected data which is noisy and has a stromg spurious peak near 2.2 ppm.
The second row showing the spectra from the proposed method show reduced noise
and complete removal of spurious peaks.
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CHAPTER 4
ACCELERATION OF TWO-DIMENSIONAL INFRARED

SPECTROS-COPY WHILE PRESERVING LINESHAPES USING
GIRAF

4.1 Introduction

Two dimensional infrared (2D IR) spectroscopy is an emerging modality that

provides detailed information about the dynamic molecular interactions at femtosec-

ond and picosecond timescales [43,44]. Its ability to probe the molecular vibrational

coupling, vibrational and orientational relaxation, as well as chemical exchange and

spectral diffusion makes it an attractive tool to investigate systems from dilute solu-

tions to membranes. However, the main challenge with traditional Fourier scanning

methods is long acquisition time, which limits the range of investigations. Some ap-

plications require measurement of spectra at multiple waiting times further increasing

the measurement time. Recently, we and other groups have investigated the use of

compressed sensing (CS) algorithms to minimize the sampling burden [3, 27, 53, 99].

These methods assume the spectrum to be sparse in the Fourier basis (i.e. signal

with few spikes in frequency domain) [27] or piece-wise smooth [108] to make the

recovery from sub-Nyquist sampled measurements well-posed. However, the vibra-

tional spectra of many systems often consist of broad peaks. Since several spikes are

required to represent a single broad peak, the Fourier representation is non sparse;

use of sparsity based CS algorithms to recover the signal from highly undersampled

data is challenging.

We propose to represent the spectrum as a sparse linear combination of damped

exponentials, each with different frequencies and damping coefficients. Note that this

is a richer representation than the Fourier basis (undamped exponentials), which is

essentially a subspace of our representation. A broad peak can be efficiently approxi-

mated as a linear combination of a few damped exponentials (Lorentzians in frequency

domain) with possibly different damping rates. The approximation of smooth func-
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tions as a linear combination of few Lorentzians is well-studied. For example, several

authors have shown that the Voigt lineshape can indeed be well approximated by

three or four Lorentzians [78].

We recently introduced an algorithm that uses a dictionary of damped expo-

nentials with continuously varying parameters [5, 88, 89]. This method significantly

reduces discretization errors that are prevalent in CS schemes, where discrete dictio-

naries with parameters sampled on a uniform grid are used. The proposed algorithm

exploits the property that damped exponentials can be annihilated by a filter, param-

eterized by the frequencies and damping factors [20,106]. This annihilation property

implies that a block Toeplitz matrix (convolution matrix) constructed from the signal

samples is low-rank [19]. We formulate the recovery of the time domain samples of

the signal from its non-uniform samples as a Toeplitz structured low-rank recovery

problem. We re-engineer our recent algorithm termed Generic Iteratively Reweighted

Annihilating Filter (GIRAF) [88,89] to solve the optimization problem in a reasonable

computation time.

In this work [8], we use simulated 2D IR data to demonstrate the qualitative

and quantitative performance of the algorithm. The results clearly show the benefit

of GIRAF over conventional CS schemes. We observe that non-uniform undersam-

pling provides lower errors than uniform sampling setting for GIRAF, consistent with

prior results of CS method. Finally, we apply the method to experimental data of

cyanate anion in methanol where the GIRAF algorithm enables nearly exact recovery

of experimental data from only 12.5% of the original samples.

4.2 Background

2D IR is a third-order nonlinear spectroscopy technique that uses multiple fem-

tosecond laser pulses to interact with a sample. The response of the sample depends

on the timing and geometry of the interactions. We perform our experiments in the

pump-probe beam geometry with the first two pulses, produced by pulse shaping,
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acting collectively as the pump pulse and the third pulse as the probe. The time

delay between pump and probe pulses is denoted by T and is known as the waiting

time. The probe also serves as the local oscillator, which we detect by upconverting

into the visible and dispersing in a spectrometer for detection in the frequency domain

by an array detector. Thus, the response in the ω3 axis is read off the spectrometer

directly on every laser shot, and the coherence time is varied by programming the

pulse shaper. A Fourier transform of the interfereogram in τ yields the response in

the ω1 axis. 4.1 gives the 2D spectra where XT (τ, t) is the time domain signal at a

specific waiting time T .

X̂T (ω1, ω3) =
∑
τ

∑
t

exp (−i(ω1τ + ω3t))XT (τ, t) (4.1)

In our experiments, 1024 points along ω3 are read off the array on every laser

shot. Around 160-170 different values of τ are collected, followed by apodization and

zero-padding to acquire ω1 to construct a 2D IR spectrum of size 512 x 1024. For a

sample with a strong chromophore and high concentration, a single 2D IR spectrum

at a given waiting time can be acquired in less than a second, though it is common

to average thousands of them to obtain a good signal-to-noise ratio (SNR). For many

systems, these acquisitions are repeated several times for each T for signal averaging,

and must be collected for various waiting times, leading to experiments lasting for

several days. We propose to undersample the τ axis and collect much less than 167

readings and recover the spectra using GIRAF, thus considerably reducing the total

number of measurements required and the net measurement time.

4.3 Theory

We will first explain the idea in the 1-D setting, before generalizing to 2-D. Con-

sider the samples of a 1-D damped exponential signal x(n) = exp(βnS);n = 0, 1, ..N ,

where β is the exponential parameter and S is the sampling interval. We note that
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if the real part of β is zero, then the signal is an undamped exponential. The key

observation is that x(n) is linearly predictable:

x(n) = exp(βS) x(n− 1). (4.2)

The above relation can also be expressed as x ∗ hβ = 0, where ∗ denotes discrete

convolution and hβ is a filter with coefficients [1,− exp(βS)]. Since the filter kills

the signal, hβ[n] is termed as the annihilation filter. When the signal is a linear

combination of exponentials with parameters βk; k = 1, .., K, it still can be annihilated

by the filter h = hβ1 ∗hβ2 ∗ ...hβK . This annihilation relation can be compactly written

as a matrix product


x(K) x(K − 1) . . . x(0)

...
...

x(N) x(N − 1) . . . x(N −K)


︸ ︷︷ ︸

TK(x)


h[0]

...

h[K]


︸ ︷︷ ︸

h

= 0, (4.3)

where TK(x) is the structured convolution matrix. In reality, the number of exponen-

tials in the signal are not known apriori. In this case, one can over-estimate K, when

it can be shown that the matrix TK(x) is low-rank. This low-rank compactness prior

on the structured matrix TK(x), which is derived from the signal x, is used to recover

the signal from its undersampled measurements [5, 88].

For a specific waiting time, we model the 2D IR signal as the sum of K two

dimensional (damped) exponentials:

sT (τ, t) =
K∑
k=1

ck exp (−αkτ − βkt)︸ ︷︷ ︸
sk(τ,t)

, (4.4)

sampled on the subset of a uniform grid [τ, t] of size M ×N ; τ = 0, λ, ..(M − 1)λ; t =
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0, η, ..(N−1)η. Here, ck are the weights of the kth exponential, while αk and βk are the

exponential parameters. Note that this model is equivalent to expressing the spectrum

as a linear combination of K Lorentzian functions. As described earlier, smooth

spectra such as Voigt profiles can be well-approximated as a linear combination of

Lorentzian functions [78].

Similar to the 1-D setting, the sk(τ, t) can be annihilated (sk ∗ hk = 0) by convo-

lution with the filter hk, where

hk =

 1 − exp (αkλ)

− exp (βkη) exp (αkλ+ βkη)

 (4.5)

Similar to the 1-D setting, this annihilation relation implies that the block Toeplitz

matrix T (XT ), constructed out of the uniform samples XT (λm, ηn) is low-rank. We

now use the above low-rank property to recover the unknown entries of XT , when

only a few samples are available:

Y ∗ = arg min
Y

rank [T (Y )] s.t Y (sl) = XT (sl); l = 1, .., L (4.6)

Here, sl; l = 1, .., L are the measured samples of XT . In particular, we search for Y

whose samples at sl match the measurements and the matrix T (Y ) has the Schatten

p norm, which is a convex surrogate for the rank. We relax the combinatorial problem

in (4.6) to obtain:

Y ∗ = arg min
Y

(
‖T (Y )‖p +

λ

2
||A(Y )− b||2

)
(4.7)

Here, A is an operator which extracts the samples of Y at the locations sl; l = 1, .., L

and b is the length L vector of measured samples. We use the iterative reweighted

least squares algorithm [34] to solve the above problem. The final spectrum is obtained

by Fourier transformation of the reconstructed Y .
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Figure 4.1: Uniformly sampled recovery of simulated data: (a)True 2D spectrum.
(b) Example uniform sampling mask for undersampling factor 9; sampled and non-
sampled locations are marked in red and blue. (c) Reconstructions using compressed
sensing (CS) algorithm and (d) GIRAF at various undersampling factors.

4.4 Experimental Methods

We compare the performance of the proposed method against standard CS meth-

ods as in our previous work [53]. We consider both the uniform sampling setting,

where data is collected for a few consecutive values of τ , and the algorithm aims to

recover it at a higher resolution, and the non-uniform setting where the same number

of τ samples are collected but with pseudo-random delays. Previous studies have

looked at recovery of exponentials using structured low rank matrices [19, 20, 106]

from uniformly sampled data; in this work we compare the performance of GIRAF

for uniform and non-uniform sampling. We use two different datasets for our compar-

ison: 1) simulated data using a Kubo lineshape model, 2) experimental 2D IR data

for cyanate anion in methanol.
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Figure 4.2: Non-uniformly undersampled recovery of simulated data: (a)True 2D
spectrum. (b) Example non-uniform sampling mask for undersampling factor 9; sam-
pled and non-sampled locations are marked in red and blue. (c) Reconstructions
using compressed sensing (CS) algorithm and (d) GIRAF at various undersampling
factors.

4.4.1 Simulated Data

We simulate a purely absorptive 2D spectrum of a 3-level system with a Kubo

lineshape model [44], where the fluctuation amplitude is 2 ps−1, the anaharmonicity

is 10 ps−1, the correlation time is 1.5 ps and the peak center 10 ps−1 is later frequency

shifted by 1800 cm−1. The waiting time is chosen to be 0 ps.

We perform uniform and non-uniform undersampled reconstruction of the simu-

lated data and test the robustness of GIRAF in presence of artificially added noise.

We added gaussian noise to the time domain data before reconstruction. 3 different

noise levels (SNR 20, 25 and 33 dB) are tested. We performed 100 noise realiza-

tions at each SNR level and performed fits on them. The results are compared with

conventional CS algorithm [53].

A second set of experiments were performed for Kubo lineshape constructed at
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Figure 4.3: Experiment 2 with Kubo-lineshapes: Second set of experiments usinh
simulated data of Kubo lineshapes with waiting time equal to correlation time is
performed. We observe the same trends for the proposed method.It performs well
at very high acceleration factors and also has superior performance for non-uniform
undersampling setting.

waiting time equal to correlation time. We evaluate the performance of GIRAF for

different lineshapes at different undersampling factors and sampling masks.

4.4.2 Experimental Data

We collected 2D IR data from a sample of 50 mM sodium cyanate in methanol held

in a sample cell with a 50 µm path length. The apparatus has been described in detail

previously [98], but the most important features are that we have approximately 1

µJ of pump light at the sample and the pump and probe pulses focus to a spot size

of approximately 60 µm. At a waiting time of T = 0 ps, we scan τ from 0 4 ps

with 24 fs size steps, which is a fully sampled signal because we use phase-increment

frequency shifting in our pulse shaper to work in the rotating frame, resulting in 167 τ

values. The fully sampled data is then retrospectively, non-uniformly undersampled.

We compare the reconstructed experimental data using the proposed method and the

conventional CS recovery.
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We also extended the algorithm for recovering 2D MR spectroscopic data. A

2-dimensional correlation spectroscopy (COSY) dataset was collected on a Braino

phantom at the GE 7T scanner at the University of Iowa. We performed experiments

to study the performance of GIRAF for structured and random undersampling upto

an undersampling factor of 4.

4.5 Results

4.5.1 Simulated Data Experiments

The reconstructed spectra for the simulated data with uniform and non-uniform

sampling patterns are shown in Fig. 4.1 & 4.2, respectively. The true spectrum in

Fig. 4.1 & 4.2(a) is obtained by Fourier transforming the fully sampled data. Exam-

ple masks for undersampling factor 9 are shown in Fig. 4.1 & 4.2(b) for uniform and

non-uniform sampling where the sampled locations are marked in red. Reconstruc-

tion using CS and GIRAF are shown in the first (c) and second (d) row, respectively.

The CS method strives to recover the fewest non-zero spectral intensities resulting in

distorted lineshapes at higher undersampling rates, mainly due to the inability of the

representation to capture the signal with few data points. GIRAF recovers the line

shapes with high fidelity. Both methods perform better in the non-uniform sampling

case as is expected, because the coherent undersampling artifacts from uniform sam-

pling are greater than the incoherent artifacts from pseudo-random undersampling.

We fit the results to a 2D Gaussian lineshape for quantitative comparison (fitting

model explained in ref [53]). Fig.4.4 demonstrates the ability of GIRAF and CS to

recover lineshape details at different undersampling factors and SNR levels. We ex-

perimented on 100 noise realizations for every undersampling factor and SNR level

and have reported the mean and standard deviation of the line fit parameters. Peak

amplitudes are suppressed with increasing undersampling, which is much worse for

CS. The center and width of peaks are reported only for the dimension that is under-

sampled. GIRAF outperforms CS according to fit results. Even in presence of noise
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Figure 4.4: Simulated Data 2D Gaussian fits at different noise levels: Mean and
standard deviation of the fit parameters for uniform and non-uniform undersampling
are shown. 100 experiments per noise realization were performed. CS parameters
degrade rapidly with increasing acceleration whereas the degradation of GIRAF fits
is remarkably less. Note that the non-uniform setting performs better than uniform
setting.

we observe the performance of GIRAF is highly reliable especially for non-uniform

undersampling. The correlation parameter, in case of GIRAF, slightly increases be-

fore decreasing at higher undersampling for uniform setting and shows more stable

behavior in the nonuniform setting, in contrast to CS where it monotonically de-

creases. Thus it can be concluded that the proposed method is robust in presence

of noise. It quantitatively recovers lineshapes up to undersampling factor of 26 i.e.

only 3.8% of the samples. Even at undersampling factor of 65, i.e. only 2 τ lines, the

GIRAF reconstruction results in only a 15% error in the correlation parameter.

Also in the second set of experiments as shown in Fig. 4.3 we observe optimal

performance of GIRAF for undersampling factors 5 and 26. We compared the perfor-

mance for uniform and non-uniform sampling masks. Similar trends were observed.

GIRAF performed well in retaining lineshapes even at high acceleration factors and

was better with non-uniform undersampling.
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4.5.2 Real Data Experiments

Due to the superior performance of non-uniform sampling, we restrict our analysis

to this setting for the experimental data. The true spectrum is shown in Fig. 4.5(a)

and an example sampling mask for factor 10, with sampled locations in red, is shown in

(b). Similar to the simulated case, the performance of CS method (c) is compromised

at high compression factors. GIRAF (d) recovers the lineshapes with almost no

distortion up to an undersampling factor of 8, i.e. only 12.5% of the fully sampled

measurements, thus performing reasonably even at higher undersampling.
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Figure 4.5: Non-uniformly undersampled recovery of experimental 2D IR data: (a)The fully
sampled 2D spectrum is recovered from 167 τ points. (b) Example non-uniform sampling
mask of undersampling factor 10 where sampled locations are marked in red and non-
sampled locations in blue. (c) Performance of compressed sensing (CS) algorithm and (d)
GIRAF at various undersampling factors.

Fig.4.6 shows a quantitative comparison of 2D Gaussian fit parameters. GIRAF
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lineshape parameters deviate ±10% of the true data upto undersampling factor of 20.

CS fits, however, significantly deviate from the true fits beyond undersampling factor

of 5. For experimental data, which has more complicated lineshape than simulated

data, GIRAF exhibits superior recovery.

Fig.4.7 shows the qualitative performance of the proposed method for both uni-

form/windowed and non-uniform undersampling. The experiments are performed at

an acceleration factor of 4 or in other words the data is recovered from only 25 % of

samples. It is observed that though both sampling schemes have remarkable recovery

the non-uniform sampling scheme is able to preserve the lineshapes.

Undersampling factor

Experimental Data - Comparison of  lineshape fits

Figure 4.6: Gaussian fit comparisons for experimental data: Fit parameters for CS
and GIRAF reconstructions are shown. Error bars represent 95% confidence bounds.
CS reconstruction for undersampling factor 20 are not reported in the plot because it
could not be fitted to the model due to severe distortion of the lineshape. Lineshape
fits for CS reconstruction degrade rapidly with increasing acceleration factor whereas
the GIRAF results are within ± 10% of the true fits.
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Figure 4.7: 2D COSY 7T MR experiments: Data collected from a 7T MR scanner was
used to evaluate GIRAF. Data from 2D COSY experiments were undersampled by a
factor of 4 for both non-uniform and uniform/windowed setting. The reconstruction
for non-uniform sampling preserves all peaks and shapes.

4.6 Conclusion

In summary, we introduced a novel method to reconstruct 2D IR data from few

measurements. The proposed algorithm models the signal as a linear combination of

damped exponentials. The algorithm exploits the low rank structure of a Toeplitz

matrix, whose entries are samples of the linear combination of exponentials, and is

capable of recovering the missing signal samples from heavily undersampled measure-

ments. Our results show that the lineshapes are adequately preserved for quantitative

analysis, with as few as 3.8% & 8% samples for the simulated and experimental data

respectively. This work introduces a very promising method with the potential to

accelerate 2D IR considerably. Detailed analyses of the method and its range of

applications are crucial, however, and are the subject of further ongoing studies.
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CHAPTER 5
CONCLUSIONS & FUTURE DIRECTIONS

5.1 Conclusions

In this PhD work, we have proposed several novel reconstruction methods for

advancement of MRSI. The major limitations of spectroscopic imaging are attended

and signal models and data driven priors are exploited to solve these limitations.

Firstly we attempt to surmount the intrinsic limitations of MRSI by using a low-rank

framework for recovery of investigated data. Following that we also introduce a novel

algorithm to remove spectral artifacts in high resolution MRSI which appears to be

a bottleneck in using EPSI for increased resolution acquisition especially at higher

field strengths. Finally we also develop a structured low rank recovery algorithm for

accelerating 2D IR and MR data. In the following sections, we revisit our primary

findings and contributions and discuss further research directions.

In chapter 2 we introduce a novel compartmentalized low-rank algorithm with

orthogonality constraint which enables reconstruction of high resolution metabolite

maps without the use of any lipid suppression methods. The proposed method is

effective at short TE (55 ms) acquisitions also. Also an efficient dual-density data

acquisition method using variable density spirals has been introduced to achieve high

resolution lipid estimates in a feasible scan time. We demonstrated in this work

with simulate and real experiments that high resolution maps can be recovered using

the low-rank models and orthogonality priors. Similar performance for both lipid

suppressed and unsuppressed data was observed, thus signifying this method to be

applicable for all datasets including challenging ones with lipid leakage. Removing

lipid artifacts using reconstruction techniques serves as a great alternative for existing

methods which result in reduced volume coverage or further decrease of metabolite

signal.

In chapter 3 we proposed a novel algorithm for denoising and deinterleaving of
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EPSI data without directly estimating phase or relying on theoretical k-space tra-

jectory. We further demonstrated the improvement offered by the proposed method

compared to the classical phase correction method. The proposed scheme would be

highly beneficial in reconstruction and correction of high-resolution EPSI, especially

for the acquisition from high field magnets. We demonstrated the performance across

different datasets. Specifically 13C mouse kidney MRSI data collected using bipolar

gradients at 9.4 T was used to study the performance of the proposed method at high

field magnets. We further validated the performance on more noisy and challenging

datasets. Two sets of 1H in-vivo MRSI data was used for this purpose. We can

appreciate the effect of denoising provided by the different low rank priors through

these experiments.

In chapter 4 we introduced a novel method to reconstruct 2D IR data from few

measurements. The proposed algorithm models the signal as a linear combination of

damped exponentials. The algorithm exploits the low rank structure of a Toeplitz

matrix, whose entries are samples of the linear combination of exponentials, and is

capable of recovering the missing signal samples from heavily undersampled measure-

ments. Our results show that the lineshapes are adequately preserved for quantitative

analysis, with as few as 3.8% & 8% samples for the simulated and experimental data

respectively. This work introduces a very promising method with the potential to

accelerate 2D IR considerably. We also demonstrate the performance of this method

on 2D MR spectroscopic data. Detailed analyses of the method and its range of

applications are crucial, however, and are the subject of further ongoing studies.

5.2 Future Directions

The reconstruction techniques developed in this thesis are ultimately targeted to-

wards clinical utility. Moreover the work tackles with several individual pieces in the

several technical challenges in MRSI. To fully evaluate the efficiency and reproducibil-

ity of the developed methods in the clinical routine, a systematic study on a large
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number of patient scans is needed. Also several new methods can be proposed by

combining priors explores in this thesis to come develop comprehensive MRSI studies.

n this section, we list a few potential methods combining ideas proposed, and also

list potential directions in terms of clinically validating the methods.

• Extension to 4-D spectroscopy: 3D acquisitions have advantages over mul-

tislice 2D imaging in terms of providing contiguous spatial coverage. For full

brain coverage , 3D spatial and 1D spectroscopic data needs to be reconstructed

at a feasible scan time. However lipid leakage artifacts are worse as it is cum-

bersome to suppress all the lipids when collecting whole brain data. Algorithms

using priors from compartmentalized low-rank models and lipid basis orthogo-

nality can help achieve full brain exams in a feasible scan time without much

set-up time for lipid suppression bands.

• Extension to 5-D spectroscopy: Multi-dimensional spectroscopy reveals

richer metabolic information by improved resolution of overlapping spectra.

However with 2 added dimensions the experimental time increases. Combining

different low-rank priors we can achieve acceleration and denoising of experi-

mental data.

• Extension to 3-D experiments for IR spectroscopy: 2D IR spectroscopy

is a tool we use to study transient molecular structure and dynamics in solution.

As a vibrational spectroscopy, it directly interrogates the vibrations of chemical

bonds and how the vibrations interact with one another.However to understand

the dynamics needs ro be studied over time which adds a third dimension.

We could extend the GIRAF algorithm to 3D setting where we estimate 3D

annihilation filters to accelerate experiments.

• Evaluation on large clinical datasets: Finally all these methods would

only achieve fruition on being evaluated on a clinical setting. A very important
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future direction would be testing these on patient groups, for example multiple

sclerosis (MS) or brain tumor groups to see if it can reveal metabolite maps

similar to existing methods at a higher resolution and accuracy.
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